
Detection of Atmospheric Changes in Spatially and Temporally Averaged Infrared
Spectra Observed from Space

SEIJI KATO,* BRUCE A. WIELICKI,* FRED G. ROSE,1 XU LIU,* PATRICK C. TAYLOR,* DAVID P. KRATZ,*
MARTIN G. MLYNCZAK,* DAVID F. YOUNG,* NIPA PHOJANAMONGKOLKIJ,# SUNNY SUN-MACK,1

WALTER F. MILLER,1 AND YAN CHEN
1

* Climate Science Branch, NASA Langley Research Center, Hampton, Virginia
1 Science System & Applications Inc., Hampton, Virginia

# Aeronautics System Engineering Branch, NASA Langley Research Center, Hampton, Virginia

(Manuscript received 7 December 2010, in final form 18 July 2011)

ABSTRACT

Variability present at a satellite instrument sampling scale (small-scale variability) has been neglected in

earlier simulations of atmospheric and cloud property change retrievals using spatially and temporally av-

eraged spectral radiances. The effects of small-scale variability in the atmospheric change detection process

are evaluated in this study. To simulate realistic atmospheric variability, top-of-the-atmosphere nadir-view

longwave spectral radiances are computed at a high temporal (instantaneous) resolution with a 20-km field-

of-view using cloud properties retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS)

measurements, along with temperature humidity profiles obtained from reanalysis. Specifically, the effects of

the variability on the necessary conditions for retrieving atmospheric changes by a linear regression are tested.

The percentage error in the annual 108 zonal mean spectral radiance difference obtained by assuming linear

combinations of individual perturbations expressed as a root-mean-square (RMS) difference computed over

wavenumbers between 200 and 2000 cm21 is 10%–15% for most of the 108 zones. However, if cloud fraction

perturbation is excluded, the RMS difference decreases to less than 2%. Monthly and annual 108 zonal mean

spectral radiances change linearly with atmospheric property perturbations, which occur when atmospheric

properties are perturbed by an amount approximately equal to the variability of the108 zonal monthly de-

seasonalized anomalies or by a climate-model-predicted decadal change. Nonlinear changes in the spectral

radiances of magnitudes similar to those obtained through linear estimation can arise when cloud heights and

droplet radii in water cloud change. The spectral shapes computed by perturbing different atmospheric and

cloud properties are different so that linear regression can separate individual spectral radiance changes from

the sum of the spectral radiance change. When the effects of small-scale variability are treated as noise,

however, the error in retrieved cloud properties is large. The results suggest the importance of considering

small-scale variability in inferring atmospheric and cloud property changes from the satellite-observed

zonally and annually averaged spectral radiance difference.

1. Introduction

Longwave spectra observed from space have been

used for retrieving atmospheric temperature vertical pro-

files (e.g., Wark and Fleming 1966; Chahine 1968, 1977),

water vapor amounts and vertical profiles (e.g., Susskind

et al. 2003), and cloud-top heights (e.g., Kahn et al. 2007;

Menzel et al. 2008; Minnis et al. 2007). The atmospheric

changes expected to occur in response to a forcing,

therefore, can in principle be inferred from longwave

spectrum changes. Retrieving atmospheric properties

such as temperature and water vapor profiles, however,

usually requires clear-sky scenes (e.g., Chahine et al.

2006; Susskind et al. 2006), although some recently de-

veloped retrieval algorithms allow clouds in a field of

view (Zhou et al. 2007; Liu et al. 2007, 2009). As a con-

sequence, the retrieval yield varies temporally and

spatially depending on clear-sky occurrence. Tempera-

ture and water vapor profiles in atmospheric conditions

that are preferentially avoided are absent in the re-

trieved data. Furthermore, results of cloud screening

algorithms (e.g., Ackerman et al. 1998; Frey et al. 2008)

and cloud property retrievals (e.g., Nakajima and King

1990; Minnis et al. 1998; Platnick et al. 2001) using
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visible wavelengths often contain a viewing zenith angle

dependent error (e.g., Loeb and Coakley 1998; Zuidema

and Evans 1998) that must also be accounted for when

inferring mean cloud property changes. In order for in-

stantaneously retrieved properties to be used to infer

atmospheric changes over time, the effects of the in-

stantaneous retrieval error on the mean value need to

be investigated. While earlier studies investigated the

temperature and humidity retrieval accuracy and yield

(e.g., Tobin et al. 2006; Fetzer et al. 2003; Fetzer et al.

2004), as well as the effects of cloud optical thickness

and particle size retrieval errors on a domain average

(e.g., Kato et al. 2006; Kato and Marshak 2009), further

studies are required to understand the effects on climate

data.

An alternative to the retrieve-and-average approach to

inferring atmospheric changes is an average-and-retrieve

approach. Earlier studies have used temporally and spa-

tially averaged spectral radiance differences from two

time periods to infer atmospheric and cloud property

changes. For example, Leroy et al. (2008) used clear-

sky-averaged spectral radiance to estimate the temper-

ature and humidity changes between two time periods.

Huang et al. (2010) extended the optimal detection

technique of Leroy et al. (2008) to all-sky conditions.

The study by Huang et al. (2010) is based on climate

model simulations so that cloud properties may be dif-

ferent from actual clouds (e.g., Norris and Weaver 2001;

Bony et al. 2004). Due to computational restrictions,

earlier studies have not accounted for temporal scale

variabilities of less than a month and spatial scale vari-

abilities of less than several hundred kilometers. As

shown in section 2, the temporally and spatially aver-

aged spectral radiance observed by a satellite instrument

is affected by variability occurring at instantaneous tem-

poral and spatial sampling scales. In this study, we fur-

ther extend earlier studies to consider the variability

present at an instantaneous sampling scale and to inves-

tigate how the variability affects inferring the atmo-

spheric change from highly averaged spectral radiance

differences.

Toward understanding the variability present at an

instantaneous sampling scale by satellite instruments,

three objectives of this study are

1) to understand how the variability present at a satellite

instrument’s temporal and sampling spatial scales

(small-scale variability) affects the retrieval of atmo-

spheric and cloud property changes from highly

averaged spectral radiances,

2) to quantify how small-scale variability influences the

atmospheric and cloud property change detection

method, and

3) to understand how clouds affect the variability and

spectral signals.

In this study, we simulate instantaneous nadir-view

spectral radiances using cloud properties derived from

satellite observations on a 20-km footprint to achieve

the objectives above. We then perturb the atmospheric

properties and compute the spectral radiances, main-

taining the instantaneous temporal and spatial resolu-

tions to test the effects of variability on the spectral

signal. Our simulation, therefore, differs from the earlier

studies that used climate-model-derived monthly mean

atmospheric properties (Huang et al. 2010). We use a

linear regression to retrieve the temperature, humidity,

and cloud property changes from the nadir-view spectral

radiance change, similar to earlier studies (Leroy et al.

2008; Huang et al. 2010).

The retrieval is performed by seeking consistent at-

mospheric and cloud property changes with the ob-

served spectral radiance change. Our retrieval goal is to

infer changes that occur on a shorter time scale (up to

a decade) instead of a longer time scale (;100 yr), as

was sometimes used in earlier studies. As the observa-

tion continues, the trend of the atmospheric and cloud

property changes can be inferred from these retrieved

properties, or changes can be detected by directly ap-

plying the average-and-retrieve technique to the spec-

tral radiance difference derived from a longer time

period. Our purpose in inferring atmospheric changes

contrasts with studies that find the best combination of

responses to a particular external forcing modeled by

climate models, and how the response changes the top-

of-the-atmosphere (TOA) spectral radiance. As a result,

we do not distinguish between changes caused by an-

thropogenic forcing and those from natural variability in

this study.

Section 2 briefly explains the motivation for inves-

tigating the effects of small-scale variability and section 3

describes the modeling of spectral radiance. Section 4

describes the results of the spectral radiance change at

nadir caused by atmospheric and cloud property pertur-

bations, and tests the necessary conditions for retrieving

atmospheric changes by a linear regression. Finally, the

retrieval process is demonstrated in section 5 while a dis-

cussion of the findings and our conclusions are presented

in sections 6 and 7, respectively.

2. Effects of observed high temporal and spatial
variabilities on atmospheric change detection

We construct a simple model to understand how

small-scale variability affects the mean spectral radiance

and the detection of atmospheric and cloud property
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changes. Suppose that we try to retrieve the atmospheric

and cloud property changes from two annual mean

spectral radiances. The linearized annual mean spectral

radiance I measured over the time period 1 is

I1(x1) 5 I(x1) 1 �
j

1

n1

�
n

1

i51

›I(x1)

›xji

dx1ji, (1)

where x is an atmospheric property such as temperature,

humidity, or cloud property. The overbar indicates the

annual mean, dx is its small-scale variability (i.e., de-

viation from the mean) present at satellite sampling

scale, and n is the number of satellite observations used

to determine the annual mean value. Many atmospheric

properties influence the TOA spectral radiance. The

different variables are expressed by the subscript j. The

subscript i indicates an individual sampling during time

period 1. The spectral radiance sensitivity to the variable

xj at an instantaneous observation ›I(x
1
)/›x

ji
deviates

from the sensitivity computed with mean atmospheric

and cloud properties and is approximately equal to

›I(x1)/›xj 1 �k(›2I(x1)/›xj›xki)dx1ki. Equation (1) in-

dicates that the mean spectral radiance I1 and the spectral

radiance computed with mean atmospheric and cloud

properties I(x1) differ when the second term on the right

side is not negligible due to the correlation between dxji

and ›I/›x
ji
. When instantaneous radiances are measured

during time period 2, atmospheric properties and the

radiance sensitivity to atmospheric properties deviate

from the respective mean values of time period 1:
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where Dx is the atmospheric or cloud property deviation

from the mean value of the time period 1 and ›I(x1)/›xj

is the spectral radiance sensitivity to the atmospheric or

cloud property xj when the mean atmospheric and

cloud properties are from time period 1. The second

term in the bracket accounts for the deviation of the

sensitivity at an instantaneous scale from the sensitivity

of the mean atmospheric and cloud properties of time

period 1.

When we divide Dxji in Eq. (2) into two components—

the mean change of time period 2 from the mean value of

time period 1 and the small-scale variability, Dxji 5 Dxj 1

dxji—and take the average of radiances sampled during

time period 2, we get
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When we take the difference of the spectral radiance

from two time periods, 2 minus 1, we get
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Term 1 is the spectral radiance change caused by the

mean atmospheric and cloud property changes. Term 2

is the contribution due to the correlation between the

small-scale variability and mean atmospheric or cloud

properties. Term 3 is caused by the correlation among

the mean atmospheric and cloud properties. Also, term

3 is the nonlinear term and throughout the remainder of

this paper, nonlinear refers to the correlations between

two mean changes among atmospheric and cloud prop-

erties. Term 4 is caused by the small-scale variability

difference between two time periods and term 5 is

caused by the difference of term 2 between two time

periods (i.e., a part of spectral shape uncertainty). Terms

4 and 5 are expected to be negligible when many pairs of

two time periods are averaged. Considering a given pair

of two time periods, however, two terms associated with

small-scale variability in terms 4 and 5 do not necessarily
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cancel at the annual time scale. When terms 4 and 5 are

not negligible, terms 2–5 become error sources in re-

trieving the atmospheric changes if one assumes that the

radiance change is caused by mean atmospheric and

cloud property changes.

3. Spectral radiance computations

To include the small-scale variability present at the

satellite sampling scale, we use satellite-observed cloud

fields in our simulations because, as shown in section 4b,

spectral radiance variability is largely caused by clouds.

Therefore, it is important to use realistic cloud fields to

test the effects of variability on atmospheric and cloud

change detection.

a. Cloud fields

The cloud fields used in this study were derived

from Moderate Resolution Imaging Spectroradiometer

(MODIS) spectral radiance observations. MODIS-

retrieved cloud properties are included in the Clouds

and the Earth’s Radiant Energy System (CERES) Sin-

gle Scanner Footprint (SSF) product. Cloud properties

derived from MODIS are output from the second edi-

tion (Ed2) of the CERES cloud algorithm (Minnis et al.

2007) based on the assumption of a single-layer overcast

cloud in a 1-km pixel. As a result, there are no over-

lapping clouds within a CERES footprint and up to two

single-layer cloud properties were kept within a CERES

footprint.

b. Computation of TOA spectra viewed from nadir

Two years’ worth of MODIS-derived cloud fields

from January 2003 through December 2004 are used as a

control run. Temperature and water vapor profiles from

the Goddard Earth Observing System Data Assimila-

tion System (GEOS-4; Bloom et al. 2005) are used for

the simulation. Ozone profiles are retrieved daily from

the Solar Backscatter Ultraviolet instrument (SBUV/2;

Bhartia et al. 1996). For the polar region during polar

night, the ozone profiles are retrieved from the Televi-

sion and Infrared Observation Satellite (TIROS) Op-

erational Vertical Sounder (TOVS) by the algorithm of

Neuendorffer (1996). Retrieved ozone profiles are sor-

ted into daily maps of 2.58 3 2.58 grids with 24 pressure

levels (Yang et al. 2011).

TOA longwave nadir-view spectra from 50 to

2760 cm21 are computed with a 1.0 cm21 resolution by

the Principal Component-based Radiative Transfer Model

(PCRTM; Liu et al. 2006) using the independent column

approximation (Stephens et al. 1991; Cahalan et al. 1994).

The spectroscopic High-Resolution Transmission Molec-

ular Absorption Database (HITRAN 2000) is used for

atmospheric molecular transmittance calculations. Spec-

tral radiances are computed at Terra overpass times and

are averaged to obtain zonal and global means.

We adapt a method that performs cloud radiative

transfer calculations using precomputed cloud trans-

mittances and reflectances (Yang et al. 2001; Wei et al.

2007; Huang et al. 2004; Niu et al. 2007). The complex

refractive indexes of ice and water are taken from Warren

(1984) and Segelstein (1981). The individual ice cloud

particle size distributions are derived from various field

campaigns as described by Baum et al. (2007). The single-

scattering properties, such as phase function and single-

scattering albedo, are derived from the finite-difference

time domain method, the improved geometric optics

method, or Lorenz–Mie theory, depending on the size

and shape of the cloud particles. A gamma size distribu-

tion is assumed for water clouds. The surface emissivity

depends on surface type but does not vary with time.

In addition to the control run, we perturb the atmo-

spheric properties and compute the TOA spectral radiance

(perturbed runs). Only the first 15 days in each month are

selected for perturbation calculations due to computational

constraints. Fifteen cloud and atmospheric properties listed

in Table 1 are perturbed independently. In perturbing

cloud properties, clouds are separated into three types de-

pending on their top height, according to the International

Satellite Cloud Climatology Project (ISCCP) cloud classi-

fications (Rossow and Schiffer 1991). Clouds with cloud-

top heights of 6.5 km or higher are classified as high-level

clouds, clouds with cloud top heights of 3.5 km or lower are

classified as low-level clouds, and clouds in between are

midlevel clouds. For perturbation 5 in Table 1, thin cirrus

clouds were defined as having an optical thickness of less

than 1. The values listed in Table 1 are used to perturb the

atmospheric and cloud properties uniformly at all latitudes.

We make a subtle but important modification to the

GEOS-4 temperature profile to make the temperature

profile consistent with the MODIS-derived cloud-top

heights. When the low-level cloud height is increased by

250 m in the cloud-top perturbation run, the tempera-

ture inversion present at the top of boundary layer

clouds is also moved with the cloud to prevent the

resulting cloud-top height from becoming higher than the

temperature inversion height. To adjust the temperature

profile, we first compute the lapse rate in the boundary

layer with the original GEOS-4 temperature profile. Sec-

ond, when the low-level cloud is moved upward by 250 m,

we extend the boundary layer so that the lapse rate from

the surface to the new cloud top is the same as the original

lapse rate below the cloud.

Note that the boundary layer cloud-top height and the

height of the temperature inversion do not necessarily

agree in the control run. In the case when the cloud-top
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and temperature inversion heights do not agree in the

control run, the temperature inversion height is adjusted

in the same way described above. Hence, the tempera-

ture inversion height also agrees with the boundary layer

cloud-top height in the control run.

Table 1 lists the magnitudes of the perturbations used

for perturbed runs. Each perturbation magnitude is

determined in one of two ways. One way is to match

approximately the root-mean-square (RMS) difference

of 108 zonal monthly means computed from the 2003 and

2004 atmospheres (approximately equal to the standard

deviation of deseasonalized anomalies). The other way

is to use the expected global mean changes between the

first two decades (2000–09 and 2010–19) of a simulation

of the Intergovernmental Panel on Climate Change

(IPCC) Special Report on Emission Scenario (SRES)

A1B forced by the National Center for Atmospheric

Research (NCAR) Community Climate System Model

(CCSM), version 3.0 (Collins et al. 2006). A reasonable

magnitude of expected atmospheric and cloud property

changes are used to test the linear relationship between

these properties and TOA spectral irradiance changes in

the presence of small-scale variability.

4. Results

As noted in the previous section, atmosphere and

cloud properties are perturbed at a 20-km spatial reso-

lution and an instantaneous temporal resolution to in-

clude the effects of small-scale variability. Because our

purpose is to compute a spectral radiance change for the

atmospheric and cloud property change retrieval, all

perturbations listed in Table 1 are applied to all regions

uniformly. Instantaneous spectral radiances are aver-

aged monthly at 108 latitude intervals. Monthly zonal

mean spectral radiance changes due to perturbations are

computed by differencing the control run and perturbed

run spectral radiances. The global mean spectral radi-

ance or brightness temperature change is computed by

averaging the zonal mean spectral radiances weighted

by their area, and subtracting the global mean radiance

(or brightness temperature) of the control run from the

global mean value of a perturbed run.

a. Spectral radiance change

Figure 1 shows the global annual mean brightness

temperature difference caused by perturbations listed in

Table 1. The shape of the spectral radiance changes from

some perturbations is expected to be similar for the

following reasons.

The contribution function of the atmospheric emis-

sion to the TOA radiance for a given wavenumber peaks

at the height where the absorption optical thickness is

approximately equal to one (Goody and Yung 1989).

The absorption optical thickness of the clear-sky atmo-

sphere is often less than one in the window spectral re-

gions from 800 to 1200 cm21 and beyond 2000 cm21.

Therefore, the emission in these spectral regions mostly

comes from the surface. In spectral regions where gas-

eous absorption is strong, the atmosphere is opaque.

Therefore, changes in the surface temperature have lit-

tle effect on the TOA radiance in spectral regions of

TABLE 1. Perturbed values in the simulation.

Perturbed

variable

Perturbed

amount

Mean RMS difference

of 108 zonal monthly mean

difference (2004 2 2003)

NCAR model

CAM3.0 (SRES A1B)

1 Near-surface and skin temperature 0.2 K 0.88 K 0.27 K

2 Surface–200-hPa temperature 0.2 K 0.57 K 0.34 K

3 200–10-hPa temperature 20.2 K 1.89 K 20.10 K

4 Surface–500-hPa water vapor Multiplied by 1.025 3.3% 1.63%

5 500–200-hPa water vapor Multiplied by 1.025 8.1% 3.16%

6 Low-level cloud-top height 0.25 km 0.13 km —

7 Midlevel cloud-top height 0.25 km 0.10 km —

8 High-level cloud-top height 0.20 km 0.19 km —

9 Low-level cloud fraction 20.025 0.033 0.0063 (low 1 middle

1 high)

10 Midlevel cloud fraction 20.025 0.036 —

11 High-level cloud fraction 20.025 0.018 —

12 Thin ice cloud (t , 1) optical

thickness

Multiplied by 1.3 32%* —

13 Ice cloud particle size 1 mm 2.1 mm —

14 Water cloud optical thickness Multiplied by 1.1 29% —

15 Water cloud particle size 1 mm 0.4 mm —

* RMS computed with all ice clouds.
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the water vapor rotation band below 500 cm21, the n2

vibration-rotation band centered at 1595 cm21, and the

CO2 vibration-rotation band centered at 667 cm21.

Because most low-level clouds are opaque at infrared

wavelengths, increasing the low-level cloud height, which

reduces the cloud-top temperature, yields a spectral ra-

diance change similar to the surface temperature increase

with an opposite sign in the window regions. However,

the emissivity of low-level clouds in the window region is

not spectrally constant. As a consequence, the cloud-top

height perturbation gives a nonuniform effective cloud-top

temperature change as opposed to a spectrally constant

radiance change in response to the surface temperature

perturbation. This difference leads to spectral shape

differences in the window region.

The spectral shapes of the brightness temperature

change due to cirrus cloud optical thickness perturba-

tion and due to upper-tropospheric relative humidity

FIG. 1. Global annual mean nadir-view brightness temperature change (blue line) computed by differencing the radiance change

between the control and perturbed radiative transfer simulations (perturbation values are listed in Table 1) and by averaging 12 monthly

global mean brightness temperature changes. The red line indicates the standard deviation of the global monthly mean spectral radiance

changes computed with 12 monthly values used to compute the blue line. Year 2003 atmospheric properties were used for computations.
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perturbation are quite different (Fig. 1). When the cirrus

cloud optical thickness is increased, the emission height

changes from a lower altitude to a higher altitude in the

spectral region in which clouds are translucent. In con-

trast, the spectral change due to upper-tropospheric

humidity perturbation occurs in stronger water vapor

lines where the emission from water vapor originates in

the upper troposphere.

The effects of the cloud particle size change are one

order of magnitude smaller than the spectral radiance

change by the optical thickness, cloud height, and frac-

tion perturbations (Fig. 1). The longwave radiance is

sensitive to cloud particle size change when the clouds

are translucent and the particle sizes are not so large

[e.g., ;100-mm diameter for ice particles; Cooper et al.

(2006)]. The distinct feature of the spectral shape can

potentially help to separate cloud microphysical changes

from macrophysical changes, if particle size changes

occur in optically thin clouds.

b. Necessary conditions for a linear regression

To accurately retrieve atmospheric and cloud prop-

erty changes by a linear regression, several conditions

must be satisfied. First, the sum of the spectral changes

caused by individual perturbations must be approxi-

mately equal to the spectral change caused by all in-

dividual properties perturbed simultaneously. Second,

although all wavenumbers used in the retrieval do not

need to respond linearly, the radiance for a given

wavenumber needs to change approximately linearly in

response to an atmospheric or cloud property pertur-

bation. Third, the spectral shape caused by each atmo-

spheric or cloud property change must be unique,

meaning that a linear regression can identify individual

spectral shapes from the sum of all spectral signals.

To test the effects of small-scale variability on the first

condition, we combined perturbations (1 and 5–12 listed

in Table 1) and computed the global annual mean

spectra to evaluate whether the sum of the spectral

changes computed independently is equal to the spectral

change from the combined run in which all are per-

turbed together. Because small-scale variability is in-

cluded in both the individual and combined runs, term 2

in Eq. (4) is the same in both the individual and com-

bined runs. In addition, because the independent runs

and combined run use the same time period, the small-

scale variabilities in those runs are the same. Hence,

terms 4 and 5 in Eq. (4) cancel out when one result is

subtracted from the other. Therefore, the spectral ra-

diance difference is due to the nonlinear term [term 3 in

Eq. (4)] that is included in the combined run but ex-

cluded in the sum of the independent runs.

Figure 2 shows that the difference is less than 10%

(relative difference less than 0.1) of the signal, except

around 1200 and 2000 cm21 (Fig. 2, bottom left). Note

that large differences around 650 cm21 are due to di-

viding by a small value, as indicated by the top-left plot

in Fig. 2. A nonlinear effect can occur, for example,

when a larger surface area with a higher temperature is

exposed to space as a result of a mean cloud fraction

decrease and a mean surface temperature increase. If

the cloud fraction change is not included (i.e., the

combined run includes 1, 5–8, and 12 in Table 1), the

nonlinear term is 1% (Fig. 2, bottom left). Therefore,

the cloud fraction change significantly contributes to the

nonlinear term. Water vapor amount perturbations also

cause a nonlinear effect when both the surface temper-

ature and humidity are perturbed. The transmittance of

the signal from the surface temperature change is al-

tered as a result of a smaller atmospheric water vapor

amount. The atmospheric transmission change by the

humidity perturbation is, however, smaller than the

cloud fraction perturbation.

In addition, Fig. 3 shows, for each 108 latitude zone,

the annual mean RMS relative difference between the

spectral radiance change computed by perturbing the

atmospheric and cloud properties of 1 and 5–12 listed in

Table 1 (solid line) simultaneously (DIs) and the sum of

the spectral radiance change computed by perturbing

these properties individually (DIi). The 108 mean rela-

tive RMS difference is computed from DIs 2 DIi over

wavenumber and divided by the RMS of DIs computed

also over wavenumber using monthly mean spectral

radiances. The annual mean RMS difference is com-

puted by averaging the monthly relative differences.

The percent error in the estimated spectral radiance

difference obtained by assuming linear combinations of

individual perturbations expressed as an RMS differ-

ence is 10%–15%, except over Antarctica (Fig. 3). The

maximum and minimum relative differences of the

monthly 108 zonal means are 16% and 3%, respectively,

when the two southernmost 108 latitudinal zones are

excluded. Figure 3 also shows that when cloud fraction

changes are excluded, the RMS difference is less than

2% for most 108 zones. The magnitude of the nonlinear

term with clouds is consistent with a study by Huang

et al. (2010), who perturbed the monthly mean atmo-

spheres to test this condition. However, our results show

that the magnitude of the nonlinear term changes sig-

nificantly with and without cloud fraction perturbation,

while the results of Huang et al. (2010) show that the

magnitude and shape of the nonlinear term are similar

with and without cloud property changes.

To further test the effects of small-scale variability

on signal linearity (second condition listed above), we
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doubled the perturbation amount and evaluated whether

or not the spectral radiance change is also doubled.

Figure 4 shows the difference in the monthly and annual

108 zonal mean spectral changes due to Dxi and 2Dxi–

Dxi. The spectral radiance changes linearly for temper-

ature changes so that ›I/›xi is nearly constant in a range

at least twice as large as the perturbation amount listed

in Table 1. Water vapor amount perturbations give a

slight nonlinear response in window regions. Larger

deviations are seen outside the window region for the

low-level cloud-height perturbation, and somewhat smaller

but significant deviations for midlevel cloud height and

water cloud particle size perturbations are noted. The

differences in Dxi and 2Dxi–Dxi computed from the

monthly mean and annual mean are similar, indicating

that for given mean atmospheric and cloud property

changes, the linear relationship is nearly insensitive to

the length of the temporal averaging period. A better

linear response is achieved by using a longer temporal

averaging period because the mean atmospheric and

cloud property changes are smaller when a longer tem-

poral period is used.

To test the uniqueness of the spectral shape given by

different atmospheric and cloud property perturbations

(the third necessary condition), we perform a simple

linear regression. The mean spectral difference DI is

expressed by a linear combination of the spectral sig-

nature matrix S and scaling vector a:

DI 5 Sa 1 dIb 1 �, (7)

FIG. 2. (top left) Absolute value of the annual global mean spectral radiance change computed by perturbing 1 and

5–12 listed in Table 1 simultaneously (top curve) and the spectral radiance difference between the spectral radiance

change of all perturbed simultaneously and the sum of the spectral radiance changes computed by perturbing 1 and 5–

12 independently and then summing the spectral radiance changes (bottom curve). (top right) As in the top-left

panel, but here cloud fraction perturbations are excluded (i.e., perturbation 1, 5–8, and 12 in Table 1). The bottom

two plots show the ratio of the bottom curve to the top curve shown in the top two plots.
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where dIb and e are, respectively, the modeling bias and

random errors. The spectral radiance difference DI

is a column vector of dimension m. The spectral signa-

ture matrix S is an m row 3 n column matrix that con-

tains distinguishing spectral radiance changes where m

is the number of wavenumbers and n is the number

of perturbed atmospheric properties used to compute

the spectral changes. Columns of S are the average of

(›I/›xj)Dxj computed at an instantaneous resolution.

Because the units of elements of S are the same as DI,

elements of a are nondimensional. Elements of a are,

therefore, scaling factors to the perturbed amount Dx

used to compute the elements of S (Table 1). The bias

and random errors caused by radiative transfer model-

ing and the uncertainty in molecular spectroscopy con-

tribute to errors in the elements of S. Because simulated

spectral radiances are used for DI in this study, the

modeling errors have no impact on the retrieval. Note

that the effects of small-scale variability (terms 4 and 5)

are estimated in section 5.

In this simple example, we use the sum of terms 1–3 as

DI. We use the spectral radiance change DI computed by

perturbing the variables listed in Table 1 (i.e., variables

1, 4–10, and 14) simultaneously to test whether or not

the shape of the spectral radiance change given by an

individual perturbation is correctly separated by a linear

regression. When there is no error term, a simple linear

regression for retrieving the atmospheric and cloud

property changes is

a 5 (STS)21STDI. (8)

For a perfect retrieval, the elements of a are all unity

in this simulation. When we obtained a by neglecting

a nonlinear term, the error was less than 10% except for

the midlevel cloud fraction (Table 2). When the non-

linear term (term 3) is included in S, as suggested by

Allen and Tett (1999), a linear regression properly re-

trieved all elements of a. This result suggests that all

spectral shapes of radiance changes used in this study are

different and can be separated by a linear regression.

In summary, our results suggest that the TOA spectral

radiance change can be expressed approximately by a

linear combination of the TOA spectral radiance changes

computed by perturbing the atmospheric properties in-

dependently. The spectral difference between the linear

combination of the spectra perturbed independently and

the spectrum computed by simultaneously perturbing all

atmospheric variables is approximately 10%–15% ex-

pressed by the relative RMS difference over the wave-

number between 200 and 2000 cm21 (Fig. 3). The relative

difference around spectral regions 1200 and 2000 cm21

can be as large as 100% when the cloud fraction change is

included (Fig. 2). The TOA longwave spectrum changes

linearly in the perturbation of the atmospheric tempera-

ture and water vapor when it is perturbed within the

variability of 108 zonal deseasonalized monthly anomalies

or within the magnitude of a decadal change predicted

by a climate model (Fig. 4). TOA longwave spectral ra-

diance also changes linearly in the perturbation of a cloud

property except for low- and middle-level cloud-height

perturbations. When the low- and midlevel cloud-height

perturbations are doubled, the annual 108 zonal mean

spectral radiance change at water vapor absorption bands,

wavenumbers less than 500 cm21, and between 1300 and

2000 cm21 significantly deviates from a linear relation-

ship. The broad spectral feature that deviates from a lin-

ear relationship is an error source when Eq. (8) is applied

to DI when the change in the atmospheric properties or

cloud properties is large. The shape of the spectral radi-

ance changes is different such that the individual spectral

radiance changes can be separated from the spectral

radiance change computed by perturbing all variables

simultaneously using a linear regression. When the non-

linear term is neglected in a spectral signature matrix,

FIG. 3. Annual and 108 zonal mean RMS relative difference

between the spectral radiance change computed by perturbing at-

mospheric properties of 1 and 5–12 listed in Table 1 (solid line)

simultaneously (DIs) and the sum of the spectral radiance change

computed by perturbing these properties individually (DIi). The

annual mean relative difference is computed by the RMS of DIs 2

DIi computed over the wavenumber and divided by the RMS of DIs

computed also over the wavenumber using monthly mean values

and averaging the monthly relative differences. The wavenumber

region used for the RMS computation is from 200 to 2000 cm21.

The vertical line indicates the maximum and minimum value

among monthly means. The lower dashed line indicates the annual

and zonal mean RMS relative difference computed without cloud

fraction perturbations (i.e., 1, 5–8, and 12 in Table 1).
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FIG. 4. Ratio of the mean difference of the 108 zonal monthly spectral radiance changes computed by doubling the perturbation amount

DI(2Dx) minus DI(Dx) to DI(Dx) (blue line), where Dx is the amount of atmospheric and cloud property perturbation given by Table 1. The

ratio is computed with monthly 108 mean spectral radiance changes, and 12 monthly mean ratios from 708S to 908N (16 zones) are

averaged. The red line is the same as the blue line except that the annual 108 zonal mean radiance changes are used to compute the ratio

and 16 zonal ratios are averaged. When the response is linear to the perturbation, the ratio is 1 at all wavenumbers. A 10-wavenumber

moving window is used to eliminate spikes caused by dividing by a small number.
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the retrieval error is less than 10% for most cases (Table

2). The spectral difference by midlevel cloud fraction

perturbation is, however, approximately 20%. Pre-

sumably, the spectral shape of the nonlinear term is

somewhat similar to the spectral shape of the midlevel

cloud fraction perturbation.

5. Retrieval simulation

Two error terms (terms 4 and 5) do not affect the

retrieval result of a simple simulation, as demonstrated

in the previous section. In this section, we assess the

effects of terms 4 and 5 in the retrieval. For the simu-

lation, we use the annual 108 zonal mean spectral radi-

ance in this study. In the simulation, we treat the spectral

difference of the 2003 and 2004 control runs as the ob-

served spectral difference and test whether or not tem-

perature, humidity, and cloud property differences between

the 2003 and 2004 data used for control runs can accu-

rately be retrieved.

The smallest eigenvalue of STS used in this study is of

the order of 10212, while the radiance change is of the

order of 1024 W m22 sr21 cm. When the matrix is in-

verted to obtain a, small errors in the elements of STS are

magnified, leading to large errors in a (Twomey 1977). To

avoid a large error in a, we introduce a smoothing con-

straint:

ac 5 (STS 1 lH)21STDI, (9)

where l is a Lagrange multiplier. For the simulation, we

use an identity matrix H to minimize the variability of

scaling factors in ac (Twomey 1977), which simply in-

creases all eigenvalues by a constant amount. To de-

termine the value of l, we compute the RMS difference

between the retrieved ac and the true values for the

annual 108 zonal means as a function of l. Based on

the result of the RMS difference as a function of l, we

use l 5 1.0 3 1027 for our simulation.

We derive ac over a 108 latitudinal zone separately

using Eq. (9). We then compare ac multiplied by the

perturbed value used in perturbed runs DxTac with the

atmospheric and cloud property changes computed from

atmospheric and cloud properties used to compute spec-

tral radiances in the control run (true values). Figure 5

shows the retrieved values versus the true values. While

atmospheric temperatures, especially stratospheric tem-

peratures, are retrieved well, our results indicate that the

retrieved cloud properties obtained with this average-and-

retrieve approach have sizable errors and large estimated

uncertainties.

The uncertainty in the retrieved values caused by the

error terms (terms 4 and 5) is estimated as follows. First,

we compute the difference of the spectral radiance

computed from the mean instantaneous spectral radi-

ances and the spectral radiance computed from annual

108 zonal mean atmospheric and cloud properties,

I 2 I(x). Second, we compute I 2 I(x) with 2003 and 2004

atmospheric and cloud properties and take the differ-

ence:

Term2 1 Term4 1 Term5

5 [I04 2 I(x04)] 2 [I03 2 I(x03)], (10)

where subscripts 04 and 03 indicate 2004 and 2003, re-

spectively. Because I04 2 I03 includes all terms and

I(x04) 2 I(x03) includes terms 1 and 3, Eq. (10) includes

terms 2, 4, and 5. Term 2 is estimated from 2003 per-

turbed runs by multiplying the spectral radiance differ-

ence by the ratio of the actual atmospheric and cloud

property changes from 2003 to 2004, Dx(04–03), by the

perturbed amount Dx, DI(Dx(04 2 03)/Dx). Using an-

nual 108 zonal mean spectral radiance, we form an m 3 l

error matrix e9, where m is the number of wavenumbers

and l is the number of 108 zones (516 because the two

southernmost zones are dropped) and the prime in-

dicates that the mean over 108 zones is subtracted so

TABLE 2. Effects of nonlinear terms. Computed from monthly mean 108 retrievals. Numbers in parenthesis are RMS errors computed

from 108 monthly means (192 values, 12 months 3 16 zones).

Truth

Retrieved without

nonlinear spectral shape

Retrieved including

nonlinear spectral shape

Near-surface and skin temperature 1.0 1.048 (0.111) 1.0

500–200-hPa water vapor 1.0 0.992 (0.009) 1.0

Low-level cloud-top height 1.0 0.969 (0.050) 1.0

Midlevel cloud-top height 1.0 0.891 (0.129) 1.0

High-level cloud-top height 1.0 0.985 (0.066) 1.0

Low-level cloud fraction 1.0 1.061 (0.079) 1.0

Midlevel cloud fraction 1.0 0.795 (0.407) 1.0

High-level cloud fraction 1.0 1.055 (0.131) 1.0

Thin ice cloud (t , 0.3) optical thickness 1.0 0.955 (0.083) 1.0
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that the mean is zero for each wavenumbers (i.e.,

�9 5 (�T 2 (1/l)I�T)T and I is an l 3 l matrix of which el-

ements are all 1). We compute an n 3 n covariance

matrix by (STS 1 lH)21ST(e9e9T)S(STS 1 lH)21 (see

appendix B), where n is the number of retrieved vari-

ables. We set l 5 0, which gives the upper limit of the

uncertainty estimate due to terms 4 and 5 to crudely

account for using e9 (the mean 5 0) instead of e. For this

limit, the expression is equivalent to [ST(e9e9T)21S]21

given by, for example, Allen and Tett (1999). We plot

the square root of the diagonal elements of the resulting

matrix as error bars in Fig. 5 to indicate the retrieved

temperature and humidity uncertainties due to terms 4

and 5. Because the error bars for the retrieved cloud

fraction and height are large and extend over the entire y

range of the plot, the error bars were omitted from the

retrieved cloud property plots. The uncertainties av-

eraged over eighteen 108 zones are 62.0 km, 60.2, and

60.4 for low cloud height, low cloud fraction, and high

cloud fraction, respectively.

FIG. 5. Comparison of retrieved atmospheric and cloud property changes by Eq. (9) (open blue circles) vs true

values (filled red circles) used in spectral radiance computations. One data point represents a retrieval result from the

annual 108 zonal spectral radiance difference. The atmospheric property differences from 2004 to 2003 are used for

the plots. The error bars are the square root of the diagonal terms of ðSTS 1 lH)21ST(e9e9T)S(STS 1 lH)21, where S

is the signature matrix and e is the sum of terms 4 and 5 in Eq. (4), multiplied by the perturbed amount. The error bars

for retrieved cloud properties are omitted because they span the entire range of the y axis used for the plots.
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Note that brightness temperature differences can be

used in the spectral signature matrix and DI for the re-

trieval, but we find that the retrieval errors are signifi-

cantly smaller, especially for cloud properties, when

radiance differences are used. The exact reason is un-

known but when brightness temperature differences are

used, the difference in the far- and near-infrared spectral

regions is emphasized compared to the difference com-

puted from radiances.

6. Discussion

A relatively small impact of small-scale variability on

achieving necessary conditions to retrieve atmospheric

and cloud properties, compared with the effects on the

retrieval results presented in section 5, can be seen from

Eq. (4). When the spectral radiance from the control run

of the same time period is subtracted from the perturbed

run, the two terms in terms 4 and 5 cancel out exactly.

Therefore, the spectral radiance change included in the

spectral signature matrix is

›I(x1)

›xj

Dxj 1
1

n1

�
n

1

i51
�

k

›2I(x1)

›xj›xki

dxkiDxj. (11)

When (11) is used for the retrieval from the annual and

108 zonal mean spectral radiance differences computed

from two time periods, however, the two terms in terms

4 and 5 in (4) remain. As a consequence, they become

a bias error in DI. The magnitude of these terms appears

to depend on latitude. The spectral shape of terms 4 and

5 resembles the spectral shape of cloud property changes

because the small-scale variability dxji is largely due to

the variability of cloud properties.

There are several possible ways to reduce the retrieval

error. If, for example, terms 4 and 5 are related to

the standard deviation of the spectral radiance, it might

be possible to estimate these terms from the mean and

standard deviation of the spectral radiance. Subse-

quently, they are subtracted from DI before the inver-

sion. Another possible way to reduce the error in the

retrieval is by separating clear-sky scenes from cloudy-

sky scenes because clouds are responsible for much of

the small-scale variability. Using only clear-sky spectral

change reduces the error in retrieving temperature and

humidity profile changes. Subsequently, constraining

the temperature and humidity changes in the retrieval un-

der the all-sky conditions might reduce the error in the

retrieved cloud property changes. Investigating the method

to reduce the retrieval error is left for future studies.

Optimizing a linear regression using empirical or-

thogonal functions (EOFs) of a covariance matrix (e9e9T)

and omitting smaller eigenvalues instead of using Eq. (9),

is an alternative approach. We, however, used Eq. (9) in

this study because the retrieval result is sensitive to the

covariance matrix, as the results of Huang et al. (2010)

imply. Perhaps the proper way to form the covariance

matrix is to use temporal correlation instead of spatial

correlation. We did not have enough simulated spectral

radiances to form the temporal correlation in this study.

Therefore, to exclude the effects of the covariance matrix,

we used Eq. (9). We found, however, that applying the

covariance matrix based on spatial correlation worsens

the retrieval result. Unlike the instrument noise, which

has a different spectral shape than the signals, terms 4 and

5 are caused by the small-scale variability of clouds and

atmospheric properties. As a consequence, they could

have similar spectral shapes as signals. Whether EOFs

and a properly formed covariance matrix help to improve

the retrieval still needs to be tested in the future.

7. Conclusions

To understand the effects of small-scale variability on

atmospheric temperature, humidity, and cloud property

change detection, we computed the spectral radiance

using high temporal (instantaneous) and spatial (;20 km)

resolutions and simulated the variability of observed ra-

diances in the nadir direction. We tested the necessary

conditions to retrieve atmospheric and cloud property

changes from spatially and temporally averaged spectral

radiances by a linear regression. Our results show that the

annual 108 zonal mean spectral radiance changes linearly

with respect to the temperature and humidity perturba-

tions when they are perturbed either by the amount of

changes expected to happen in a decade or by the RMS

difference of 108 zonal monthly means between 2003 and

2004. The spectral radiance due to cloud-height pertur-

bations changes nonlinearly outside the window region,

especially for low-level clouds. The sum of the spectral

changes computed by perturbing atmospheric properties

independently is equal to within 10%–15% of the spectral

change computed by perturbing all properties simulta-

neously for most spectral regions. Cloud fraction changes

are largely responsible for the difference. When cloud

fraction changes are excluded, the difference decreases to

less than 2%. Spectral shapes of the radiance change

caused by different atmospheric and cloud property

changes are separated by a linear regression. Variability

present at an instantaneous resolution does not affect the

establishment of these conditions necessary for atmo-

spheric and cloud property change detections by a linear

regression as much as it affects the retrieval. Our simu-

lation indicates that retrieved atmospheric and cloud

property changes from the annual 108 zonal mean spectral

radiance changes contain errors, especially in retrieved

cloud properties, because small-scale variability affecting
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the mean spectral radiance from two periods does not

necessarily cancel. As a consequence, the residual becomes

a bias error in the spectral radiance difference computed

from two time periods. Two possible ways to improve the

retrieval are 1) to perform the retrieval using clear sky

only and constrain the temperature and humidity changes

in the all-sky retrieval and 2) to seek the relationship be-

tween the standard deviation of the spectral radiance and

small-scale variability terms. Using the relationship, bias

errors caused by small-scale variability can be subtracted

from the spectral radiance difference. Investigating ways

to improve the retrieval is left for future studies.
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APPENDIX A

Cloud Effects on the TOA Spectral Radiance

The nadir-view radiance for clear sky is

I
n,clr 5 B

n
(Tsfc)e2t

n0 1

ðt
n 0

0
B

n
(t

n
)e2t

n dt
n
, (A1)

where Bn is the Planck function, Tsfc is the surface tem-

perature, and tn0 is the optical thickness of the atmo-

sphere. The subscript n indicates that the optical thickness is

wavelength dependent. The nadir-view radiance for over-

cast cloudy sky is

I
n,oyc 5 B

n
(Tsfc)e2(t

n0
1t

nc
) 1

ðt
n0

1t
nc

0
J

n
(t

n
)e2t

n dt
n
,

(A2)

where tnc is the spectral-dependent cloud optical thick-

ness and the source function Jn is

J
n

5 B
n
(t

n
) 1

v0

4p

ð2p

0

ð1

21
P(t

n
, m9, f9)I(t

n
, m9, f9) dm9 df9.

(A3)

In (A3), v0 is the single-scattering albedo, P(m, f) is the

phase function, m is the cosine of the zenith angle, and

f is the azimuth angle. For the partly cloudy sky, the

nadir-view radiance is assumed to be the sum of the

clear-sky and overcast radiances weighted by the cloud

fraction f.

Suppose both the surface skin temperature and at-

mospheric air temperature are perturbed by DTsfc and

DT, respectively. When we expand the Planck function

by a Taylor expansion and keep the first term, the nadir-

view radiance difference is

DIclr 5
›B

n

›T
DTsfce2t

n0 1

ðt
n0

0

›B
n

›T
DTe2t

n dt
n
. (A4)

The difference for cloudy sky is

DIcld 5 (1 2 f )

�
›B

n

›T
DTsfce2t

n0 1

ðt
n0

0

›B
n

›T
DTe2t

n dt
n

�

1 f

�
›B

n

›T
DTsfce2(t

n0
1t

nc
)

1

ðt
n0

1t
nc

0

›J
n

›T
DTe2t

n dt
n

�
. (A5)

The difference between the clear- and cloudy-sky dif-

ferences is, therefore,

DIcld 2 DIclr 5 f

�
›B

n

›T
DTsfce2t

n0 (e2t
nc 2 1)

1

ðt
n0

1t
nc

0

›J
n

›T
DTe2t

n dt
n

2

ðt
n0

0

›B
n

›T
DTe2t

n dt
n

�
. (A6)

If the temperature profile above the surface does not

change with the surface temperature, the second and

third terms vanish, which leads to

DIcld 2 DIclr 5 f

�
›B

n

›T
DTsfce2t

n0 (e2t
nc 2 1)

�
. (A7)

Equation (A7) shows that DIcld has a different spectral

dependence from DIclr because the spectrally dependent

deference is between tn0 and tnc.

APPENDIX B

Contribution of Terms 4 and 5 to the Covariance of
Retrieved Properties

From Eq. (9),

ac 5 (STS 1 lH)21STDI. (B1)

Let

A 5 (STS 1 lH)21ST, (B2)
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where A is a constant matrix.

From (B1) and (B2),

ac 5 ADI. (B3)

Applying a variance operator Var to (B3),

Var(ac) 5 A Var(DI)AT. (B4)

From the fact that (STS 1 lH)21 is symmetric, this leads

to

AT 5 S(STS 1 lH)21. (B5)

The contribution of the error term e9 in DI to the vari-

ance of ac is obtained by applying the Var to e9:

Var(ac) 5 A Var(�9)AT. (B6)

Substituting (B2) and (B5) into (B4), we get

Var(ac) 5 (STS 1 lH)21ST(�9�9T)S(STS 1 lH)21.

(B7)
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